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Computation of a Controlled Store Separation from a Cavity

Christopher A. Atwood*
NASA Ames Research Center, Moffett Field, California 94035-1000

Coupling of the Reynolds-averaged Navier-Stokes equations, rigid-body dynamics, and a pitch-attitude
control law is demonstrated in two and three dimensions. The application problem was the separation of a
canard-controlled store from an open-flow rectangular cavity at a freestream Mach number of 1.2. The transient
flowfleld was computed using a diagonal scheme in an overset mesh framework, with the resultant aerodynamic
loads used as the forcing functions in the nonlinear dynamics equations. The proportional and rate gyro
sensitivities were computed via pole placement techniques for the linearized dynamical equations, in which
computed aerodynamic stability derivatives were used. In two dimensions, a comparison between full and
linearized flow equations for a perturbed pinned missile was made, and a controlled store was found to possess
improved separation characteristics over a canard-fixed store. In three dimensions, trajectory comparisons with
quasisteady wind-tunnel data for the canard-fixed case were made. Comparisons of canard-fixed and canard-
active simulations showed that controlled store offers only modest improvements in cavity separation charac-
teristics for these high-ejection rate cases.

Nomenclature
Cm = pitching moment coefficient
C. = normal force coefficient
c — speed of sound
D = cavity depth
F = force, nondimensionalized by pc2L2

I = body inertia
Ka = proportional gain
K, = rate gyro sensitivity
L = characteristic length
M = Mach number
M = moment, nondimensionalized by pc2L3

m = body mass or stage number
Re — Reynolds number
s = Laplace operator
t = time
a = angle of attack
d = effector deflection angle
t, = damping ratio
0 = body attitude
p = density
T = canard servocharacteristic time
a) = angular velocity, frequency, or vorticity

= time derivative

Subscripts
c = commanded, canard
n = natural
t = tail
sc = freestream quantity

Superscript
n = time level

Introduction

T HE design of current high-performance aircraft has typ-
ically been compartmentalized by discipline, most corn-
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monly structures, fluids, and controls. However, as the per-
formance demands escalate, aircraft systems have become
increasingly interrelated.1-2 Therefore, there is a need to in-
vestigate the optimization of the aircraft in its entirety, not
simply by evaluation of its subsystems.

This type of multidisciplinary analysis is currently accom-
plished with simplified physical models, such as panel flow
and modal structural codes. However, in critical regions of
the flight envelope these linear methods may fail, leading to
the requirement for higher-order models.3-4 Unfortunately,
this increased physical fidelity comes at a high computational
price, and hence, fewer design cycles are permitted as com-
pared to the linear methods.

Nonetheless, the simulation of the nonlinear interaction of
fluids and rigid body motion will be useful in several ways.
First, the simulation could be used to computationally pro-
totype a conventionally designed control system in a nonlinear
environment. The simplifications that are typically used to
compute the aerodynamic interactions and loads for control
law design will not be present in a Navier-Stokes simulation.
Second, the coupled simulations could be used to help develop
a control law where nonlinear effects are important, using the
computed aerodynamic forces and moments instead of tab-
ulated empirical relationships.5 Hence, computational pro-
totyping and design of an aircraft control system offers a
means of reducing aircraft design cycle cost while enhancing
safety and performance.

The effort documented here begins to address the inter-
action of the disciplines of fluids, rigid body dynamics, and
controls in nonlinear flight regimes. In order to assess the
accuracy of these initial computations, a problem that could
be compared against analytic and experimental results was
chosen: the cavity store separation problem. A recent wind-
tunnel study of the separation of stores from cavity bays were
used as a basis for comparison.6 These quasisteady sting-
mounted missile release tests determined the trajectory of an
uncontrolled missile from a rectangular cavity and were used
to validate the canard-fixed computation.

Previous computational efforts have shown that the com-
ponent problems of cavity flows7"9 and uncontrolled store
separation10"13 can be solved with reasonable accuracy using
overset grid methods. Tetrahedral cell meshes have also been
used to obtain inviscid solutions to specified trajectory prob-
lems.1415 Here, the combined problem of viscous flow, rigid-
body dynamics, and automatic control techniques is addressed
using an overset mesh framework.
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The following sections discuss the approach used to solve
the coupled system and the results obtained for several two-
and three-dimensional cases. Comparisons of numerical re-
sults are made against linearized or experimental results as
available.

dient, and adiabatic. Information transfer across overset mesh
boundaries was implemented using trilinear interpolation of
the dependent variable vector, Q = [p, pu, pv, pw, e]T. The
speed of the flow solver was 13 jus/cell/step on a Cray Y-MP
processor.

Approach
Figure 1 summarizes the procedure used to solve this series

of coupled fluids, body dynamics, and control problems. The
solution process begins with the specification of the geometry
in the initial grid via the generation of a blocked mesh system.
After establishing the initial grid connectivity information,
the solution of the flowfield can begin. Depending on the
problem being addressed, this fixed grid solution may be steady
or possess a bounded envelope. After convergence of this
fixed-geometry flow solution, the motion of the body com-
mences.

Computation of the body motion begins by passing the body
state and integrated loads to the six-degrees-of-freedom rigid-
body dynamics code. The body position and attitude are then
integrated one time step and kinematic constraints are ap-
plied. The controller then uses the updated body state to
compute new effector settings, when are then applied to all
effector-attached grids. Finally, since the grids have changed
relative positions, the intergrid communication is re-estab-
lished. This cycle repeats for each time step until the simu-
lation is complete.

Flow Solver
For these simulations the flowfield was computed using the

Reynolds-averaged Navier-Stokes (RANS) equations, where
the slowly time-varying flow is resolved and rapid fluctuations
are modeled. The implicit diagonal scheme of Pulliam and
Chaussee16 was used, implemented in the chimera grid frame-
work of Benek et al.17 Euler implicit time marching and cen-
tral second-order spatial differencing was used, with viscous
wall conditions specified as no-slip, zero normal pressure gra-
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Turbulence Model
The Baldwin-Lomax algebraic turbulence model,18 as im-

plemented by Buning,19 was used for the wall-bounded flows
with the addition of a variable Fmax cutoff. Grid topology is
chosen such that a unique wall distance is readily available.

The cavity spanning shear layer uses an eddy viscosity ob-
tained using F(y) = y\c* \, as suggested by Baldwin and Lomax
for wake regions. Using this suggestion along with Gortler's
shear layer solution and the Prandtl mixing length assumption,
the model can be modified for application to shear regions.19

The resultant model has been used successfully in studies of
free shear layers, a backward-facing step, and two- and three-
dimensional resonant and quieted cavities.9

Grid Generation and Communication
The missile and cavity geometries were represented using

hyperbolic20 and algebraic21 grid generation methods. Gen-
erally, the hyperbolic scheme, which solves equations for cell
volumes and orthogonality, was used for the wall-bounded
regions, while transfinite interpolation was used in shear re-
gions. This topology also leads to straightforward specification
of the turbulent regions and allows for the grid refinement of
each independent zone. In addition, this type of grid system
also permits the reuse of meshes for stability derivative and
configuration studies.

The exchange of flow information is accomplished using a
domain connectivity function, with the donor-receiver rela-
tionship established at each time step using an efficient
technique.22 Although the cost of re-establishing intergrid
communication is problem-dependent, the computational ex-
pense is generally a third of that used by the diagonalized
flow solver. The initial location for the hole-cutters was spec-
ified using a graphical interface,23 after which the movement
of the grids and hole-cutters were updated automatically. An
example of the overset mesh topology used is shown in Fig.
2, which shows a two-dimensional store configuration at an
instant in the separation process.

Kinematics and Rigid-Body Dynamics
The rotational dynamics, outlined in detail elsewhere,24 are

described by Euler's equations of motion that align the xyz
coordinates with the body principal axes at the e.g. The body
attitude is updated using Euler parameters, which circumvents
the gimbal lock problem. For instance, for a rotation 6 about
an axis A, Euler parameters can be specified as

e = [A! sin(0/2), A2 sin(0/2), A3 sin(0/2), cos(0/2)]r

These Euler parameters, integrated according to the rota-
tional body dynamics, are updated and stored for each grid.11-22

Fig. 1 Overall coupled system approach. Fig. 2 Coarsened grids after release.
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Fig. 3 Block diagram for pitch-attitude missile control system.

Kinematic constraints can be imposed during restricted de-
gree-of-freedom simulations, e.g., the forced ejection pro-
cess. In addition, the assumption of rigid-body dynamics elim-
inates the need to store the component grids for all time, since
the Euler parameters may be used to compute grid attitude
from the initial position.

While the dynamics equations are solved in inertial coor-
dinates, the control laws are typically implemented in a body-
fixed coordinate system. Rotating aerodynamic effectors were
implemented by summing the commanded effector and body
angular velocities a). Integration of a> gives the proper effector
attitude relative to the initial grid positions. The hinge line
location is updated according to the attitude of the body.
Storage of the hinge line and Euler parameters associated
with each grid allows nesting of parent-child bodies to an
arbitrary level without modification to the grid communica-
tion and support software.

Pitch-Attitude Control Law
The fourth-order state-feedback system shown in Fig. 3 was

used as the model for both the two- and three-dimensional
missile cases. In Fig. 3 the plant and servo can be approxi-
mated by

6_
8,.

ds + e 1
as2 + bs + c

where da — a>2
n b/a = 2£wfl, the servo-time constant was

taken as r = 1/75 s, and d and e are dependent upon body
properties and flight conditions. The plant coefficients were
determined from the governing equation; they are composed
of geometric and flow information as well as the stability
derivatives. The stability derivatives were determined from
linearized supersonic airfoil theory in the two-dimensional
cases and from direct solution of the RANS equations in three
dimensions. Pole placement techniques and linearized system
time response were used to determine the proportional Ka
and the rate gyro Kr sensitivities.

Results
The method outlined above was applied in two dimensions

to a perturbed pitch-free case, with comparisons to linearized
analysis. In two and three dimensions, solutions to three-
degrees-of-freedom cavity store separation problems were de-
termined. In all cases both uncontrolled and controlled cases
were computed for comparison.

One-Degree-of-Freedom Simulation
In order to provide some measure of validation, a two-

dimensional, one-degree-of-freedom simulation was imple-
mented at a flight altitude of 45,000 ft. Comparison of the
linearized and the coupled nonlinear system response for a
small perturbation allowed assessment of the basic method-
ology.

Linearized Dynamics
The equation of motion used, Mv = 1VV0, after neglecting

the pitch-damping term, was

- (ClaSd),]0 + (ClaSd8)c}

where the body was pinned at the location of the e.g. with
distance d from the lifting surface.

Expressing the system in a state variable representation,
with x = [f 0, 0, 0, 8C]T, then the open-loop equation can
be expressed as x = Ax + Bu, where u = Qx + Rr and r
is the commanded state. The closed-loop equation is ex-
pressed as

x = Ax + B[Qx + Rr] = [A + BQ]x + KaBr

A + BQ =

0
0
0

~(eg/d)Ka

1
0

-(da)
-g[Ka + (eld)Kr

0 0
1 0

- (bid) dla
~gKr -f\

KaB = [0, 0, 0, (Ka + Kt)g}T

The state can be computed using Euler explicit integration

BQ + (//A/)]*" + KaBr"}

The gain levels, Ka = 1.2, Kr = 0.06 s, and Kt = 1.1, were
computed using root locus and time-domain response. These
gains were input into a linearized one-degree-of-freedom dy-
namics routine to verify implementation of the control law.
The solution was initialized with a perturbation in pitch:

where 6stall = 9 deg and T = 0.03. Figure 4 shows the result
of the linearized analysis. A slightly divergent envelope is
seen for the canard-fixed case, and damped behavior for the
closed-loop system.

For these linearized simulations, a left curve slope of C,a ,
= 4a/VMJ - 1 was used for the tail fin, 88% of that slope
for the thick canard foil that also stalled at a = 9 deg. Com-
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Fig. 4 Linearized two-dimensional missile: body loads, orientation,
and canard deflection time histories for both uncontrolled and con-
trolled cases.
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parison of the steady lift curves generated by linearized thin
airfoil theory and the RANS equations showed that the 4.5%
thick tail fin fillows linearized thin airfoil theory at low angles
of attack, while the slope of the 15% thick canard foil was
about half of 4a/VM2 - 1.

Nonlinear Coupled Simulation
The control law developing previously was also imple-

mented into the code that coupled the RANS equations with
rigid-body dynamics. From Fig. 3, the control law can be
expressed as

«c = g/(s + f)[Ka(0c - 0) - Kr6 + Kt6e]

and integrated using Euler implicit integration

l)]{[Ka(6c - KrO"

K,6C]

which can then be subjected to limit constraints. The result
of the nonlinear solution is shown in Fig. 5 for both canard-
fixed and controlled cases. After convergence to a steady-
state solution, an accuracy-limited time step size of 46 JJLS was
used, with a computational cost of five Cray Y-MP CPU
hours. Grid communication was approximately one-third of
the overall CPU time. Figure 5 shows behavior similar to the
linearized cases, again with a modestly growing envelope for
the canard-fixed case, and damped oscillations for the con-
trolled case. This comparison provides a degree of validation
of the implementation of the control law in the coupled code.

0.04

My

0.0

-0.04
20

•010

CD

§
1

i
-10

Computed Load History

Controlled
.... I Nondim. Force, F .
— I Nondim. Moment, M

Rej_ = 32 million
m = 88 kg
l = 62 kg m2

Computed State History

Time,t,s 0.3
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Fig. 6 Two-dimensional controlled store separation: time histories of
a) e.g., b) nondimensionalized force and moment, and c) body attitude
and canard deflection angles.

Two-Dimensional Controlled Store Separation
Using the control law developed for the one-degree-of-

freedom simulation discussed previously, albeit with an ar-
bitrarily chosen 0C = 5 deg, a three-degrees-of-freedom sim-
ulation of a store separating from a cavity was implemented.
The separation began with the application of an 18,000-N
ejection force for 0.044 s, with corresponding acceleration of
about 20 g, during which the controller was off and no angular
velocity was imparted to the store, as can be seen in Fig. 6.
The solution was initialized with the store fixed in carriage
position, allowing damping of the starting numerical tran-
sients. Following convergence of the cavity acoustic envelope,
the same accuracy-limited time step size of 46 JLCS was used.
The time step size was chosen such that the streamwise Cour-
ant number was about unity in the shear layer. This restriction
is equivalent to allowing an acoustic wave to propagate only
one cell in a single step. Ten grids were used for this 1.3 x
10s point domain. The results, shown in Figs. 6 and 7, show
that the nose of the controlled store remains pointed away
from the parent body, while the canard-fixed store is pointed
towards the parent 0.3 s after release. Also, from Fig. 6a,
since the controlled store is commanded to point away from
the parent, the separation is faster for the controlled case than
for the canard-fixed store, albeit with additional drag. In-
spection of the normal force history in Fig. 6b shows a com-
ponent at about 50 Hz, corresponding to the second stage of
Rossiter's formula,25 which does not significantly excite the
body dynamics. In addition, Fig. 6b shows that the uncon-
trolled store has a net aerodynamic force acting towards the
cavity at t = 0.3 s.

Three-Dimensional Missile Stability Derivatives
In order to determine the proper feedback gains, the sta-

bility derivatives of the missile were computed via the RANS
equations. For this three-degrees-of-freedom simulation this
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Fig. 7 Two-dimensional control store separation: instantaneous Mach
contours.
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Fig. 8 Three-dimensional missile: computed and measured normal
force and pitching moment coefficients.

includes C/7, , Cm&, and Cw . These parameters were computed
from four steady'cases: a nominal 9 = 8C = 0, a fixed pitch
attitude 0 = 0.1 rad, 8C = 0, a fixed canard deflection 0 =
0, 3C = 0.1 rad, and a constant pitch rate 0 = 0.3 rad/s.
Canard motion was permitted by 1/16-in. (full-scale) nominal
gap between the missile body and canard. This is a similar
arrangement to the actual missile, albeit without the connec-
tor pin in the numerical model. The force and moment history
was converged to three digits for all integrated loads, requiring

approximately 3000 steps, on this 15 grid domain containing
1.5 million points.

Figure 8 compares computed lift and moment curves against
experimental data.6 The differences between the pitch and
yaw sweep data may indicate the presence of experimental
model asymmetry. Figure 8 shows that while the lift curves
are in reasonable agreement, the computed moment curves
do not show the inflection at 6 = 0 deg seen in the experi-
mental data. The inflection, caused by the canard downwash
on the tailfins, is lost in the simulation due to grid coarseness.
The computed coefficient of pitching moment due to angle
of attack and canard deflection were Cm = - 132/rad and
Cm& = 241/rad. Computed and reported pitch damping coef-
ficients C/7, were, respectively, -11,040/rad and -5781/rad.
Using the computed stability derivatives, gain levels of Ka =
1.25, Kr = 0.13 s, and K, = 0.6 were chosen, again using
both root locus and pinned-missile time domain response.

Three-Dimensional Cavity Store Separation
The modeled geometry for the cavity store separation case

can be seen in Fig. 9, which shows the missile at an instant
during the trajectory. The domain contains about 2.2 million
points distributed in 21 grids, with the body-fixed grids being
reused from the previous stability derivative study. Grid com-
munication CPU costs were 20% of the flow solver cost for
these three-dimensional cases, and a stability-limited time step
of 41 JLLS was used. Figure 10 shows instantaneous Mach con-
tours from the controlled store separation case, where t = 0
is the time at which the ejection loads of 18,204 N and 1391
N-m were applied to the store. Defining a characteristic time
Tc to be the elapsed time for a particle to convect across the
aperture at the mean shear layer speed, the ejection process
was begun 2TC after the artificial starting transients dissipated.

A comparison of the trajectories for both uncontrolled and
canard-controlled, with Oc = 10 deg, cases are shown in Figs,
lla and lib. The ejection forces were applied to the store
such that the velocity at the end of the 8-in. piston stroke was
30 ft/s normal to the cavity with a pitchdown rate of 1 rad/s,
not accounting for aerodynamic loads. These rates match the
nominal conditions used during wind-tunnel testing. An end-
of-stroke rate mismatch owning to the neglection of aero-
dynamic loads in the computation of ejection force and mo-
ments was 1 ft/s and 0.1 rad/s. Comparison of the body attitude
curves at t = 0.044 s in Fig. lib shows that no rotation of
the store was permitted during the ejection period of the
experiment, and that an end-of-stroke rotation of 1 rad/s was
instantaneously applied at 0.044 s. These simulations applied
a realistic constant force and moment for the duration of the
ejection period. Figure lib also shows that the resultant at-
titude mismatch at the end-of-stroke was 1.2 deg.

Fig. 9 Three-dimensional uncontrolled store: geometry and coars-
ened symmetry plane grids for canard-fixed missile in release.
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Fig. 10 Three-dimensional controlled store: instantaneous Mach con-
tours on the symmetry plane.

Comparison of the linear trajectories in Fig. lib for the
experiment and the fin-fixed store case shows reasonable for
the vertical motion, but less drag acting on the simulated store
as compared to the sting-mounted store experiment. Inspec-
tion of the vertical position curves at t = 0.3 s in Fig. lib
also shows that only slightly improved separation distance is
achieved by the controlled store over the canard-fixed case
for this fast ejection case.

The store attitude from experimental and canard-fixed com-
putational results are compared in Fig. lib, which shows a
difference of 2 deg by the end of the simulation. This dis-
crepancy may be attributable to the time-averaging of the
experimental loads, sting effects not included in the compu-
tation, numerical errors, or differences in the treatment of
ejection process.

Figure lib also compares the attitude of the canard-active
store with the canard-fixed case. The attitude of the controlled
store approaches the commanded value smoothly, with canard
deflections of less than 7 deg controlling the body attitude
and angular velocity. At the end of the simulation, the attitude
of the controlled store is about 10 deg, which is the com-
manded attitude, and is nearly trimmed in moment (see Fig.
lie). In addition, the body attitude for both canard-fixed and
active cases were seen to contain a small 50-Hz component,
implying that the missile is dynamically responding to the
second stage of cavity feedback. This effect may be indirectly
noted by the oscillations in 8 seen in Fig. lib.

Aerodynamic forces and moments are shown in Fig. lie,
where the experimental load histories were time-averaged
over 1.0 s from samples every 0.01 s during the quasisteady
wind-tunnel test. Comparison of the experimental and sim-
ulated loads for the canard-fixed missile show similar trends,
with the negative (restoring) moment and positive force ev-
ident from 200 to 300 ms. The store loads show a strong
component at the second stage of cavity oscillation, with the
maximum fluctuating component reached as the store was
traversing the shear layer, from 50 to 150 ms.
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Body Attitude (6) and Canard Deflection (5) and

Fig. 11 Three-dimensional store separation: comparison of trajec-
tories and load histories.

Figure lie also shows that the controlled simulation gen-
erally possesses higher fluctuating loads and a phase lag as
compared to the uncontrolled simulation. In addition, it may
be seen from Fig. lie that the fluctuating load levels drop at
/ = 250 ms, about the same time as the canards pierce the
shock attached to the leading edge of the cavity (see Fig. 10).
These complex time-dependent effects would generally not
be seen from lower-order fluid models. Finally, the controlled
store can be seen to be approaching a trimmed state by in-
spection of the pitching moment from 250 to 300 ms.

Conclusions
A state-feedback pitch attitude control law has been im-

plemented in a coupled Reynolds-averaged Navier-Stokes/
rigid-body dynamics code. The coding methodology of the
effector kinematics will allow rapid implementation of arbi-
trarily complex multiple-effector control laws.

Validation of the coupled code was performed in two and
three dimensions. For a perturbed two-dimensional canard/
tail-fin case, the nonlinear and linearized results showed good
comparison with the controller either active or off. However,
comparison of a three-dimensional canard-fixed computation
with quasisteady wind-tunnel results showed some differences
in stream wise position and pitch orientation.

Application of the control law to both two- and three-di-
mensional, three-degrees-of-freedom cavity store separation
problems revealed improved trajectory characteristics as com-
pared to canard-fixed simulation. However, due to the high
ejection rates of the stores, the improvement was modest.
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For smaller ejection loads, aerodynamic loads will be rela-
tively more significant, and hence, the improvement in tra-
jectory due to aerodynamic control may be larger. Decreased
ejection loads will reduce the incidence of vehicle system
failures owing to large accelerations.
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